

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Ortige Con

*	
*	
7	
-	
\sim	
\sim	
. •	
0	
_	
ū	
٠.	
4	
~	
-	
9	
v	
\sim	
. •	
6	
S	
0	
$^{\circ}$	

CANDIDATE NAME									
CENTRE NUMBER						CANE NUME	DIDATE BER		

CO-ORDINATED SCIENCES

0654/23

Paper 2 (Core)

October/November 2011

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 28.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 26 printed pages and 2 blank pages.

(a) Fig. 1.1 shows a flowering plant, and two cells from the plant. 1

Fig. 1.1

(i)	On Fig. 1.1, draw a line from each cell to a part of the plant in which it could found.	be [2]
(ii)	Explain why cell A contains the structures labelled X , while cell B does not.	
		[3]
(iii)	Explain how the shape of cell B adapts it for its function.	

[2]

(b) The colour of the flower petals is determined by a gene with two alleles, **R** and **R** is dominant and produces red flowers, and allele **r** produces white flowers.

www.PapaCambridge.com (i) Complete Table 1.1 to show the phenotype produced by each of the three possible genotypes.

Table 1.1

genotype	phenotype
RR	
Rr	
rr	

	[1]
(ii) On Table 1.1, draw a circle around one heterozygous genotype	e. [1]
(iii) Predict the ratio of red to white flowers that would be produced the genotypes Rr were crossed.	I if two plants with
	[1]
(c) A grower has a rare variety of orchid with unusual flowers. She decided plants from this orchid using tissue culture.	es to produce new
Suggest the advantages to the grower of using tissue culture to prrather than sowing seeds she has collected from the orchid plant.	oduce new plants,

[2]

2 (a) Fig. 2.1 shows the forces acting on a moving car.

Fig. 2.1

(i)	The car is accelerating.
	What can be stated about the sizes of the driving force and frictional force?
	[1]
(ii)	The car reaches a steady speed of 20 m/s.
	What can be stated about the sizes of the driving force and frictional force now?
	[1]
(iii)	The mass of the car is 1500 kg.
	Calculate the kinetic energy of the car when it is travelling at a steady speed of $20\mathrm{m/s}.$
	State the formula that you use and show your working.
	formula used
	working

(iv) The car travels at 20 m/s for 2 minutes.

Calculate the distance travelled.

State the formula that you use and show your working.

formula used

working

m [2]

(b) Fig. 2.2 shows a speed-time graph for part of the car's journey, during which the brakes are used.

Fig. 2.2

(i) Mark with an **X** the point on the graph at which the brakes are applied.

(ii) Calculate the deceleration of the car.

Show your working.

_____m/s² [2]

[1]

www.PapaCambridge.com (a) Table 3.1 shows the electron arrangements of atoms of five elements, **P** to atoms the number of protons is the same as the number of electrons. 3

Table 3.1

atom	1 st shell	2 nd shell	3 rd shell	4 th shell
Р	2	1		
Q	2	8	1	
R	2	8	7	
S	2	8	8	1
Т	2	8	8	2

(i)	Explain which element in Table 3.1 would not be a good conductor of electricity.
	element
	explanation
	[2]
(ii)	State and explain which one of the elements P , Q or S is the most reactive.
	most reactive
	explanation
	[2]
(iii)	An atom of element P has a nucleon (mass) number of 7.
	State the number of neutrons in this atom and explain your answer.
	number of neutrons
	explanation
	[2]
(iv)	Suggest two elements in Table 3.1 which would react together to form an ionic compound.
	Explain your answer.
	elements and
	explanation
	[2]

udent in a For iner's

(b) Fig. 3.1 shows a working electrochemical cell that was made by a student in a laboratory.

Fig. 3.1

liquid the student used

(i) The student used one of the liquids shown below as the electrolyte in her cell.

gasoline (a hydrocarbon) sodium chloride solution water

State which liquid the student used and explain briefly why the other liquids would **not** have been suitable.

	explanation
	[2]
(ii)	State and explain briefly what would happen to the voltmeter reading if the zinc electrode was replaced by an electrode made of copper.
	[2]

www.PapaCambridge.com A man enters a theatre and then moves up an escalator (moving staircase) as sh Fig. 4.1.

Fig. 4.1

The man weighs 1000 N.

working

(a)	(i)	Calculate the work done lifting the man a vertical distance of 5 m.
		State the formula that you use and show your working.
		formula used

												J		[2]
(ii)	State the escalator.	•	energy	the	man	has	gained	when	he	reaches	the	top	of t	the
												J		[1]

www.PapaCambridge.com

(b) In the theatre, a musician is playing the cymbals.

The man in the audience thought that the sound from the cymbals was loud because of its high frequency. He was wrong.

	Expl	ain why the man was wrong.	
			[2]
(c)	Blue	light and red light are being shone on the musician.	
	Thes	se are two of the primary colours of light.	
	(i)	Name the third primary colour of light.	[1]
	(ii)	Name one of the secondary colours of light.	[1]

(d)	The	theatre measures 50 m x 50 m x 20 m. The air inside it has a density of 1.3 kg.
	(i)	Calculate the volume of the air in the theatre.
		m ³ [1]
	(ii)	Show that the mass of the air in the theatre is 65 000 kg.
		State the formula that you use and show your working.
		formula used
		working

[2]

BLANK PAGE

Please turn over for Question 5.

www.PapaCambridge.com

		an important plastic which has many uses in the home and industry. In a sists of fibres which are made of protein molecules. In PTFE and wool are made of polymer molecules. It is a sist of the terms monomer and polymer.
PT	FE is	an important plastic which has many uses in the home and industry.
		nsists of fibres which are made of protein molecules.
		n PTFE and wool are made of polymer molecules.
(α)		lain the meanings of the terms <i>monomer</i> and <i>polymer</i> .
	Lλþ	iain the meanings of the terms monomer and polymer.
		ro1
		[3]
(b)	The	chemical formula of the monomer used to make PTFE is C_2F_4 .
	(i)	Explain the meaning of the formula C ₂ F ₄ .
		[2]
	(ii)	Explain why the monomer, C_2F_4 , is not an example of a hydrocarbon.
		[1]
	(iii)	Name the type of compound which polymerises to form the proteins that make up
	(,	wool.
		[1]
(a)	ртг	EE is a thormoplastic material
(C)		E is a thermoplastic material.
	Des	scribe how PTFE behaves when it is heated and then cooled.

[2]

www.PapaCambridge.com (d) Fig. 5.1 shows a magnified section of a wool fibre. The fibre has been washed hard water. The fibre is covered with tiny crystals of limescale.

Fig. 5.1

(i)	Explain which one of the chemical formulae below is of a compound which causes
	hardness in water.

	NaC <i>l</i>	K ₂ CO ₃	Ca(HCO ₃) ₂	Li ₂ SO ₄			
	formulaexplanation						
				[1]			
(ii)	In many countries the water supplied to homes and industry does not contain compounds which cause hardness.						
	Suggest one advantage of a water supply which does not contain compounds which cause hardness.						
				[1]			

www.PapaCambridge.com

6 (a) Fig. 6.1 shows a section through part of a person's lungs.

Fig. 6.1

(i)	Name the structure labelled X . [1]
(ii)	Name the type of blood vessel that is shown in Fig. 6.1. [1]
(iii)	On Fig. 6.1, draw an arrow to show the direction in which air flows when the person breathes out.
(iv)	Carbon dioxide diffuses out of the blood down its concentration gradient, as shown by arrow ${\bf Y}.$
	Explain why there is more carbon dioxide in the blood that is brought to the lungs than in the air inside structure ${\bf X}$.
	[2]
(v)	Describe how blood travels from the heart to the lungs. Your description should include the role of the heart in this process.
	[3]

	the state of the s	
	15	
	ny people who regularly smoke tobacco get bronchitis. This happens when lds up in the lungs. Bacteria breed in the mucus.	amb
(i)	Explain why mucus builds up in the lungs of a person who smokes tobacco.	10
		`
	[2	2]
(ii)	Explain why a build-up of mucus inside structure X in Fig. 6.1 would make ga exchange difficult.	s
		21

7	(a)	(i)	Caffeine is a compound contained in coffee. Many people who consume during the day often find that they have difficulty in getting to sleep at night.	Cann
			Explain why it is correct to refer to caffeine as a drug.	
				[1]
		(ii)	Some drugs are analgesics.	
			Why might a person need to take an analgesic?	
				[1]

(b) Some coffee drinks are sold in self-heating cans.

Fig. 7.1 shows a cross-sectional diagram of one design of self-heating can.

Fig. 7.1

Fig. 7.2 shows the can after it has been turned upside down and the pin through the thin metal sheet. This allows the water to fall into the calcium oxide.

Fig. 7.2

The reaction between calcium oxide and water produces the compound calcium hydroxide, $Ca(OH)_2$.

(i)	In an internet video to explain how the can works, it is stated that the water mixes with 'limestone'.
	State why this information is incorrect .
	[1]
(ii)	What can be deduced about the reaction between water and calcium oxide?
	[1]
iii)	A student suggests the symbolic equation below for the reaction between calcium oxide and water.
	CaO + $2H_2O \longrightarrow Ca(OH)_2$
	Explain whether or not this is a correctly balanced equation.
	[2]

product

		May May 1	
		18	
;)	Cal	cium hydroxide forms an alkaline solution which is known as limewater.	For
	(i)	Name the compound that can be tested for using limewater, and describe the result of this test.	iner's
		compound	COM
		result of test	
		[2]	
	(ii)	Suggest a solution which could be used to neutralise a sample of limewater and name one of the products of the reaction.	_
		solution	

[2]

8 (a) Fig. 8.1 shows an electric kettle.

Fig. 8.1

What happens to the rest of the energy supplied?

[1]

(b) The bar chart in Fig. 8.2 shows the electrical power rating of three kettles.

Fig. 8.2

(i) What is the power rating of kettle C?

W	[1]

(ii) Kettle A takes 10 minutes to boil some water.

Predict how long kettle **B** will take to boil the same mass of water.

	minutes	[1]
--	---------	-----

Fig. 8.3 shows the arrangement of particles in a solid.

Fig. 8.3

Draw similar diagrams for a liquid and a gas.

[2]

www.PapaCambridge.com

(d) Kettle A has a label underneath it. Fig 8.4 shows some of the information on this label.

voltage 250 V power 1000 W

Fig. 8.4

(i) Use the formula

power = voltage x current

to show that the maximum current likely to pass through the kettle is 4A.

	(ii)	A current of 4 A passes through the kettle for two minutes.						
		Calculate the number of coulombs of charge which pass through the kettle.						
		State the formula that you use and show your working.						
		formula used						
		working						
		C	[2]					
(iii)	In another kettle, the current was 10 A when used with a 250 V supply.						
		Calculate the resistance of the heating element in the kettle.						
		State the formula that you use and show your working.						
		formula used						
		working						
		Ω	[2]					
		e the idea of convection to explain why a kettle has the heating element at tl tom.	he					
			[2]					

For iner's (f) The rules in Fig 8.5 are from an electrical safety manual.

ELECTRICAL SAFETY RULES

1. **Never** use electric cables which have become split or frayed.

2. Never overload an electrical socket.

3. **Never** operate electrical appliances with wet hands.

Fig. 8.5

For iner's

Explain why each of these safety rules is important. rule 1	
23	
Explain why each of these safety rules is important.	For iner's
rule 1	Tide
	Se. CO
	13
rule 2	
1010 Z	
rule 3	
[3]	

BLANK PAGE

www.PapaCambridge.com

9 Cichlid fish live in lakes in east Africa. Fig. 9.1 shows a cichlid fish.

		Fig. 9.1			
(a)	(i)	State two features, visible on Fig. 9.1, which are characteristic of fish.			
		1			
		2	[2]		
	(ii)	State one feature, visible on Fig. 9.1, that is shared by fish and reptiles, but not amphibians and mammals.	by		
			[1]		
(b)	Fish reproduce sexually. The female fish lays eggs into the water. The male fish releases sperm onto them. Fertilisation takes place in the water.				
	Explain what is meant by fertilisation.				
			[2]		

www.PapaCambridge.com

(c) When the young hatch from the eggs, the mother cichlid fish takes them into her whenever danger threatens.

Cichlid fish mothers that have been bred and kept in captivity do not do this. The breeders have to take the young away from the mothers, because the mothers eat their young.

Researchers measured the levels of testosterone in two groups of cichlid fish mothers. One group had been bred in captivity, and the other group had recently been caught in the wild.

Fig. 9.2 shows the results.

Fig. 9.2

		**	
		27 27	1
	(i)	Describe how the testosterone concentrations in the fish bred in captivity from the fish caught in the wild.	Cann
			[2]
	(ii)	These results do not prove that high testosterone levels in the mothers bred captivity caused them to eat their young.	in
		Explain why this statement is correct.	
			 [1]
d)	In h	numans, testosterone is produced in much larger quantities in men than in women	•
	Nar	me the organ that produces testosterone in men.	
			[1]

The Periodic Table of the Elements **DATA SHEET**

_								1		
	0	4 He ium	10	40 Ar Argon	8				175 Lu Lutetium	
	ΝII		19 T Fluorine 9	35.5 C1 Chlorine	80 Br Bromine 35	127 I Iodine	At Astatine 85		173 Yb Ytterbium	
			16 Oxygen 8	32 Sulfur	79 Se Selenium	128 Te Tellurium			169 Tm Thulium	
	>		14 N Nitrogen 7	31 Phosphorus	75 AS Arsenic	122 Sb Antimony 51			167 Er Erbium	
	>		12 Carbon 6		73 Ge Germanium 32	So Tin 50	207 Pb Lead		165 Ho Holmium	
	=		11 Boron 5	27 A1 Aluminium	70 Ga Gallium 31				162 Dy Dysprosium	
						112 Cd Cadmium 48			159 Tb	
					64 Cu Copper	108 Ag Silver	197 Au Gold		157 Gd Gadolinium	
dn					59 X Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium	
Group					59 Co balt	Rhodium	192 I r Iridium		150 Sm Samarium	
		1 Hydrogen			56 Fe Iron	Ruthenium 44	190 OS Osmium 76		Pm Promethium	
						Tc Technetium 43			Neodymium	
					Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		141 Pr Praseodymium	
					51 V Vanadium 23	Niobium 41	181 Ta Tantalum		140 Ce Cerium	
					48 T Itanium 22	2r Zrconium 40	178 Hf Hafnium			
					Sc Scandium	89 < Yttrium 39	139 La Lanthanum 57 *	Actinium temporal Actinium tem	series eries	
	=		9 Be Beryllium	24 Mg Magnesium	40 Ca Calcium	Sr Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series	
	_		7 Li Lithium 3	23 Na Sodium	39 K Potassium 19	85 Rb Rubidium 37	133 Cs Caesium 55	Fr Francium 87		

www.papaCambridge.com $\overset{\text{Yb}}{\text{\tiny Ytterbium}}$ **T** Mo Erbium Fm **H**olmium Es The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). Californium 98 Dy Dysprosium 66 ರ **Terbium** ਲ Gadolinium **Currium** gq **Europium** Am Pu å ž Ба Serium Cerium 232 **Th** 90 b = proton (atomic) number a = relative atomic mass X = atomic symbol

Key Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.